
Journal of Chromatography A, 1217 (2010) 4713–4722

Contents lists available at ScienceDirect

Journal of Chromatography A

journa l homepage: www.e lsev ier .com/ locate /chroma

Statistical analysis of packed beds, the origin of short-range disorder, and its
impact on eddy dispersion

Siarhei Khirevicha, Anton Daneykoa, Alexandra Höltzela, Andreas Seidel-Morgensternb, Ulrich Tallareka,∗

a Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
b Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Germany

a r t i c l e i n f o

Article history:
Received 29 March 2010
Received in revised form 3 May 2010
Accepted 7 May 2010
Available online 19 May 2010

Keywords:
Packed beds
Packing method
Ordered packing
Random packing
Disorder
Degree of heterogeneity
Microstructure
Statistical analysis
Voronoï tessellation
Voronoï volume distribution

a b s t r a c t

We quantified the microstructural disorder of packed beds and correlated it with the resulting eddy dis-
persion. For this purpose we designed a set of bulk (unconfined) monodisperse random sphere packings
with a systematic, protocol-dependent degree of microstructural heterogeneity, covering a porosity range
from the random-close to the random-loose packing limit (ε = 0.366–0.46). With the precise knowledge
of particle positions, size, and shape we conducted a Voronoï tessellation of all packings and correlated
the statistical moments of the Voronoï volume distributions (standard deviation and skewness) with the
porosity and the protocol-dependent microstructural disorder. The deviation of the Voronoï volume dis-
tributions from the delta function of a crystalline packing describes the origin of short-range disorder of
the investigated random packings. Eddy dispersion was simulated over a wide range of reduced velocities
(0.5 ≤ � ≤ 750) and analyzed with the comprehensive Giddings equation. Transient dispersion was found
to correlate with the spatial scales of heterogeneity in the packings. The analysis of short-range disorder
based on the Voronoï volume distributions revealed a strong correlation with the short-range interchan-
nel contribution to eddy dispersion, whereas transchannel dispersion was relatively little affected. The
presented approach defines a strictly scientific route to the key morphology–transport relationships of
current and future chromatographic supports, including their morphological reconstruction, statistical
Eddy dispersion
Direct numerical simulation
L
H

analysis, and the correlation with relevant transport phenomena. It also guides us in our understanding,
comparison, and optimization of the diverse packing algorithms and protocols used in simulations and
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experimental studies.

. Introduction

The properties of a wide variety of materials, including liquids,
lasses, crystals, and granular media, depend on the way particles
ack and arrange [1]. One of the scientists who first investigated
he microscopic nature of granular media was Bernal [2–4], who in
series of papers about the “structure of liquids” reported some of

he most important features of the structural organization of disor-
ered sphere packings. Bernal originally used random packings of
all bearings to study the structure of liquids and he coined the term

random-close packing’ to describe the densest random arrange-

ent of spheres. Indeed, the filling of containers with balls is among

he oldest physical puzzles known to scientists [5]. Apart from its
athematical significance, this problem has found applications in
odern science related, e.g., to jamming in granular media, com-
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paction of colloids, the structure of liquids, and the glass transition
[6]. Despite the progress made in developing a statistical mechan-
ics for such systems [7], the definition of jammed states and the
characterization of their randomness are still intensively discussed
[8–13].

In chromatography we have accepted to “jam-pack” columns
by a slurry packing process that experience has told us to be
most appropriate in terms of the traditionally measured (post-
column) separation efficiency [14,15]. The packing process involves
several, often strongly interrelated, parameters, among them
the physicochemical properties of the stationary-phase particles,
interparticle forces, slurry preparation, the application of pres-
sure and ultrasound, as well as the coupled stress–strain-flow
behavior [16]. Owing to the difficulty in probing the packing
microstructure systematically as a function of all relevant pro-

cess parameters, column packing and consolidation are largely
treated phenomenologically and considered an art rather than
a science. Although at present the packing process cannot be
approached comprehensively by simulations, recent progress in
our understanding and modeling of the dynamic behavior of
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articulate systems originates from discrete particle simulation
17,18].

The density or particle volume fraction � of random sphere pack-
ngs falls between � ∼0.55 and � ∼0.64, values which are commonly
eferred to as the random-loose-packing (RLP) and random-close-
acking (RCP) limit, respectively [11,19–22]. In chromatography,
he density of a column packing is more often described by the
nterparticle void fraction or interparticle porosity ε = 1 − �. Stable
olumn packings can vary up to 15% in their interparticle porosities,
epending on the packing parameters. Moreover, a given interpar-
icle porosity is just a macroscopic value that may apply to a large
umber of columns with very different packing microstructures.
he latter, however, determine the individual structure–transport
elationships that govern hydrodynamic dispersion in and ulti-
ately the separation efficiency of any packed column.
Packing microstructures are commonly classified as “more

omogeneous” or “more heterogeneous”. These intuitive, qualita-
ive labels are usually based on column performance. Experimen-
ally, it would be desirable to generate packings with a known
nd controllable degree of heterogeneity. However, this requires
sound scientific quantification of the degree of heterogeneity

f the underlying, individual packing microstructure. An adequate
uantification of the disorder (or microstructural degree of hetero-
eneity) in different packings, which could have the same packing
ensity � or interparticle porosity ε, and a strong and sensitive cor-
elation to the experimentally observable dispersion, has not yet
een demonstrated.

Detailed three-dimensional numerical simulations of flow and
ransport in sphere packings are particularly suited to the challenge
f investigating the central structure–transport relationships in
hromatographic media, because this approach allows to systemat-
cally study relevant parameters, such as the shape and average size
f the particles, the particle size distribution, inter- and intraparti-
le porosities, as well as the column dimensions and cross-sectional
eometry [23–43]. Transient dispersion can be recorded eas-
ly, thereby quantifying time and length scales required for the
ttainment of asymptotic dispersion behavior and providing cor-
elations for the dependence of dispersion on the mobile phase
elocity. Because all dispersion data are referenced to a partic-
lar packing microstructure and are unbiased by extra-column
ontributions, the numerical simulations approach establishes a
ystematic route towards quantitative structure–transport rela-
ionships. Further, statistical information about the structure of the
imulated packings can be collected, because position, size, and
sually also the shape of the particles are known. However, the
icrostructures of computer-generated idealized random packings

re protocol-dependent, just as packing density and column perfor-
ance depend on the precise packing protocol in chromatographic

ractice [8,40]. Thus, any structure–transport analysis should be
ccompanied by a suitable statistical analysis of the employed
acked beds. This will allow to compare and optimize the protocols
or simulated as well as experimental packings, e.g., with respect
o dispersion.

In the present study we apply a statistical and hydrodynamic
nalysis to packed beds to correlate disorder with dispersion. We
mploy Voronoï tessellation and use the distribution of Voronoï
olumes to quantify the degree of heterogeneity of a packing. This
ethod permits to explicitly capture the disorder of packed beds in

he form of quantitative scalar measures. We demonstrate the great
otential of this approach for a well-designed set of computer-
enerated bulk, random packings of monosized hard spheres with

more homogeneous” and “more heterogeneous” microstructures,
overing packing densities from the RLP to the RCP limit, and their
symptotic longitudinal dispersion coefficients simulated over a
ide range of mobile phase velocities. To our knowledge, this is the
rst report that sensitively correlates the actual disorder of packed
. A 1217 (2010) 4713–4722

beds with the measurable dispersion in packed beds, using Voronoï
volume distributions as a suitable statistical measure.

2. Generation of packed beds

Experience tells us that both packing density or porosity and
packing procedure affect dispersion. We therefore generated a set
of bulk packings (which mimic infinitely wide, randomly packed
beds without walls) with packing (interparticle) porosities ε from
the RCP to the RLP limit and a systematically varied degree of het-
erogeneity.

Computationally, isotropic random monosized hard-sphere
packings with periodic boundary conditions and dimensions of
approximately 10dp × 10dp × 70dp (where dp is the sphere diam-
eter) were successfully reproduced using a modified Jodrey–Tory
(JT) algorithm [44]. The realized packing dimensions are sufficient
for performing both statistical analysis of packing microstructure
and simulations of hydrodynamic dispersion within the void space
of a packing. The JT algorithm can be classified as a ‘collective rear-
rangement’ method. It starts from a random distribution of n sphere
(particle) centers in a simulation box of volume Vbox. Sphere over-
lap is typical in the initial configuration. The value of n is calculated
from the targeted (final) packing porosity εfin, Vbox, and the final
sphere diameter dp,fin as

εfin = 1 −
(

n�d3
p,fin

6Vbox

)
. (1)

Each iteration of the algorithm includes (i) the search of the
two particle centers C1 and C2 with minimum pair-wise distance
dp,min, where dp,min defines the maximal sphere diameter at which
no overlap occurs in the current packing configuration with cor-
responding packing porosity εmin = 1 − (n�d3

p,min/6Vbox); and (ii)
the symmetrical spreading apart of these two particle center posi-
tions along a line C1C2 up to a new distance (dp,max) according to
the following equation:

dp,max = dp,min

(
1.0 + ˛ log10

(
dp,fin

dp,min

))
. (2)

As dp,min asymptotically approaches dp,fin (Eq. (2)), εmin
approaches εfin (Eq. (1)). The algorithm exits when the condition
εmin < 1.001εfin is satisfied. The constant ˛ in Eq. (2) defines the
magnitude of each displacement of centers C1 and C2, i.e., higher
values of ˛ cause larger displacements.

The JT algorithm produces geometrically jammed, but mechani-
cally unstable sphere packings, because interparticle forces are not
considered. On the other hand, the JT algorithm has the following
advantages: (i) the porosity and degree of heterogeneity of a pack-
ing can be systematically varied via the algorithm input parameters
εfin and ˛; (ii) the generated packings are isotropic as opposed to
packings generated with sedimentation-based methods [45]; (iii)
partial packing crystallization is avoided [46]; (iv) mono- or poly-
disperse packings can be generated in confined geometries with
arbitrary cross-section [41]; and (v) the algorithm has a complexity
of O(n) [47], which enables the generation of packings contain-
ing millions of spheres at relatively low porosities (ε ∼ 0.4) on one
CPU core [42]. Compared with other popular computer algorithms
[48,49] the JT algorithm is ideally suited to the study of dense,
isotropic, random sphere packings in the porosity range most rel-
evant for chromatography (0.36 < ε < 0.40).
In this study we represent varying degrees of microstructural
disorder by four different types of packings. So-called R-packings
originate from a random uniform initial distribution of particle cen-
ters in the simulation box. To generate S-packings, the simulation
box was initially divided into n equal cubic cells and each particle
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Fig. 1. Bulk (unconfined) random packings of monosized hard spheres at the
random-loose packing limit (ε = 0.46), generated with the S × 2 or R × 0.001 packing
p
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3.1. The lattice-Boltzmann method for fluid flow
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rotocols. Shown are the first three particle layers of the packings, as a front view
bottom) and as the projection of particle centers onto the front plane (top).

enter was then placed in a random position into a cell. Both types
f initial distributions result in a uniform random distribution of
article centers within the simulation box. R-packings were gen-
rated with ˛ = 1 (R) or ˛ = 0.001 (R × 0.001), and S-packings with
= 1 (S) or ˛ = 2 (S × 2). With a small displacement value (cf. ˛ in
q. (2)) the particle centers tend to stay closer to their initial posi-
ions so that the final configuration reflects the randomness of the
nitial distribution of particle centers. A larger displacement value

rovides a more uniform distribution of particle centers in the final
onfiguration. The four generated packing types therefore reflect a
ystematic decrease of heterogeneity (or disorder) in the sequence:
× 0.001 > R > S > S × 2.

ig. 2. Bulk (unconfined) random packings of monosized hard disks at ε = 0.46 generated
- and R-configurations (top) and the generated two-dimensional packings (S × 6, S, R, R ×
n the initial distributions with that of the final packings.
A 1217 (2010) 4713–4722 4715

Fig. 1 shows a front view onto three particle layers as well as
a projection of the particle centers for the most ordered and the
least ordered of the generated packings (S × 2 and R × 0.001, respec-
tively). Even to the experienced eye, differences between the two
packing microstructures are not discernible in Fig. 1. Therefore, we
use two-dimensional views (disks instead of spheres) to illustrate
the differences between the four different packing types and addi-
tionally replace the S × 2 packing by a S × 6 packing for a stronger
effect (Fig. 2). For selected regions the microstructure of the final
packings is compared with the respective initial particle center dis-
tributions in Fig. 2. The generated packings indeed reflect what was
intended by their respective packing protocols: (i) S-packings are
more homogeneous than R-packings, owing to the initial, ordered
distribution of the disks, and (ii) initial nonuniformities are best bal-
anced in the S × 6 configuration and least balanced in the R × 0.001
configuration.

Three-dimensional sphere packings of each type were gener-
ated at the following porosities: ε = 0.366, 0.38, 0.40, 0.42, 0.44,
and 0.46. The border values (ε = 0.366 and 0.46) reflect the theo-
retical RCP and RLP limits reported by Song et al. [11]. They have
shown that random hard-sphere packings in three dimensions can-
not exceed a density limit of � = 0.634 (or ε = 0.366). Similarly, they
predicted a theoretical limit for the lowest stable volume fraction
occupied by a sphere packing of � = 0.536 (ε = 0.464).

For each packing protocol and porosity 10 individual packings
were generated from 10 different initial positions of particle cen-
ters (seeds). We were not able to generate S × 2 packings at the
RCP limit (ε = 0.366). The total of all generated packings amounts
to 230. Each packing was discretized with a relatively high spatial
resolution of 60 nodes per dp resulting in a space grid with dimen-
sions of approximately 600 × 600 × 4300 nodes. Each grid node was
then assigned as either ‘solid’ or ‘fluid’ according to its position, i.e.,
within or outside the closest spherical particle.

3. Simulation of flow and dispersion
The lattice-Boltzmann method (LBM) [50–53] was used for the
simulation of low-Reynolds number flow of an incompressible fluid
in the interparticle void space of the bulk packings. LBM has been

with different packing protocols. Shown are the initial distributions of the disks for
0.001; bottom). Circles around several regions help to compare the microstructure
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Fig. 3. (A) Voronoï cells in a two-dimensional array of disks. The Voronoï cell of
disk i is encased by the bold red lines. The gray-shaded area indicates the contribu-
tion of disk j to the Voronoï area of disk i. (B) Voronoï volume distributions for the
716 S. Khirevich et al. / J. Chrom

ncreasingly used to model pore-scale flow in systems with com-
lex geometries like those found in porous media such as packed
eds [23,27–34,36–43]. An advantage of this approach is its inher-
nt parallelism, which allows easy parallelization of the developed
umerical models for effective use on high-performance comput-

ng systems (supercomputers). We implemented the D3Q19-LBM,
three-dimensional 19-velocity lattice model [54]. Each site of this
odel demands 19 × 4 bytes of random access memory resulting

n a final lattice size of 19 × 4 × 600 × 600 × 4300 ≈ 110 GB. At the
olid–liquid interface, a bounce-back rule was applied [55]. It repro-
uces the ‘no-slip’ velocity boundary condition and Poiseuille flow
rofiles in straight microchannels [56] as well as between parti-
les in a packed bed [57]. For each packing, the velocity field was
rst calculated at a low Reynolds number (∼0.1), and the calculated
elocity field was then linearly rescaled [33] to cover the whole
elocity range used in the dispersion simulations.

All simulations were performed on IBM BlueGene/P systems
nstalled at RZG (Rechenzentrum Garching, Germany) and FZJ
Forschungszentrum Jülich, Germany). A typical simulation of one
elocity field required ∼0.5 h on 2048 processor cores and around
20 GB of memory. After its simulation, the calculated velocity field
as written into an output file with a size of ∼17 GB.

.2. Random-walk particle-tracking for tracer dispersion

Mass transfer in the bulk packings was simulated by a random-
alk particle-tracking (RWPT) technique [58], where inert tracer
articles are initially distributed randomly in the interparticle void
pace. During each time step ıt, the displacement of each tracer par-
icle is determined as the sum of convective and diffusive motions.
onvective displacement of a tracer particle is calculated using a
elocity vector from the nearest (to the tracer) lattice node, assum-
ng that the fluid velocity is constant over the lattice voxel. Diffusive
isplacement in each spatial coordinate follows a Gaussian distri-
ution with an average of zero and a variance of (2Dmıt)1/2, where
m is the diffusion coefficient. The time step ıt was defined such

hat the average displacement did not exceed ıl/2, where ıl is the
attice spacing used to calculate the fluid flow velocity field.

Time-dependent longitudinal dispersion coefficients DL(t) were
alculated from the tracer displacements as

L(t) = 1
2N

d

dt

N∑
i=1

(�lz,i− < �lz >)2, (3)

here N is the number of tracer particles (N = 5 × 105), and �lz,i and
�lz〉 are the Cartesian components of the longitudinal displace-

ent of the ith tracer and the average longitudinal displacement of
he tracer ensemble after time dt, respectively. Transverse disper-
ion coefficients DT(t), where needed (cf. Fig. 5A), were calculated
imilarly.

Hydrodynamic dispersion in the packings was simulated at
educed velocities (�) or particle Péclet numbers (Pe), defined as

Pe = uavdp/Dm (where uav is the average mobile phase velocity
hrough the packed bed), ranging from 0.5 to 750. The total simu-
ation time of hydrodynamic dispersion for all generated packings

as ∼460 h on 2048 BlueGene/P processor cores. The program real-
zation of all algorithms was implemented as parallel codes in C
anguage using the Message Passing Interface (MPI) library [59,60].

. Results and discussion
.1. Statistical analysis of packed beds

A sensitive analysis tool for probing the local packing density
nd disorder in packed beds is the determination of Voronoï cells
61–64]. This method, initiated by Finney [65], has found increasing
generated bulk sphere packings at the limiting porosities (ε = 0.366 and 0.46). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)

use for the characterization of the morphology of random sphere
packings, including the study of, e.g., structural transitions upon
compaction or the formation of coagulated colloids [19–22,66–74].
In particular, Schenker et al. [74] recently investigated and com-
pared different methods to quantify and classify the disorder of
particulate packings (in the context of stability and microstruc-
ture of coagulated colloids) based on (i) pore size distribution, (ii)
density-fluctuation, and (iii) Voronoï volume distribution. Each of
these methods provides a scalar measure, either via a parameter
in a fit function or an integral, that correlates with the heterogene-
ity of the microstructure and thus allows to quantitatively capture
the degree of heterogeneity of a granular material. They found
that among the three methods, analysis of the Voronoï volume
distributions reflected differences in the degree of microstruc-
tural heterogeneity most sensitively [74]. We therefore expect
this method to be an excellent diagnostic tool for establishing
a strong correlation between disorder and dispersion in packed
beds.

A Voronoï cell is the generalization of a Wigner–Seitz cell for
disordered structures. For a packing of monosized spheres it is the
polyhedron that contains all points closer to a given sphere cen-
ter than to any other [61–64] (as illustrated in Fig. 3A for a set of

monosized disks; cf. the area encased by the bold red lines around
disk center i). Voronoï tessellation partitions the whole space of a
sphere packing into a set of non-overlapping Voronoï volumes V,
which are inherently associated with the local packing density. The
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ig. 4. Statistical analysis of the Voronoï volume distributions P(V) for the bulk sp
acking protocol (R × 0.001, R, S, S × 2) and porosity (0.366 ≤ ε ≤ 0.46). Error bars in

acking is represented quantitatively by the Voronoï volume dis-
ribution P(V). The distribution function is defined such that P(V)dV
s the fraction of cells with a volume between V and V + dV. We
sed the Quickhull algorithm [75] to compute the volume V of the
oronoï cells.

Fig. 3B shows the Voronoï volume distributions for the gener-
ted packings at the limiting porosities, ε = 0.366 and 0.46. At the
CP limit (ε = 0.366), all Voronoï volume distributions are relatively
arrow and symmetric, irrespective of the underlying packing
rotocol. They are nearly perfectly collapsed onto a single “uni-
ersal” distribution. At the RLP limit (ε = 0.46) the distributions
re shifted towards larger Voronoï volumes, as expected from the
dilution” of the packings at increasing porosity, and differences
etween the packing protocols emerge. Importantly, Voronoï vol-
me distributions become wider and more asymmetric (skewed)
ith increasing microstructural heterogeneity in a packing. Thus,

he S × 2 packing has the narrowest and most symmetric Voronoï
olume distribution at ε = 0.46, and the R × 0.001 packing the broad-
st and most skewed, confirming the qualitative structural insight
rom Fig. 2.

Fig. 4 summarizes the statistical properties of the Voronoï
olume distributions for the generated packings in terms of the
tandard deviation � (Fig. 4A) and the skewness 	 (Fig. 4B). These
ata quantify the effect of packing protocol and porosity as we
ove from the RCP (ε = 0.366) to the RLP limit (ε = 0.46) on the
icrostructural heterogeneity of a packing, already qualitatively

iscussed for Fig. 3B. At the RCP limit (ε = 0.366), the standard devi-
tions �(P(V)) are practically identical for all generated packings
Fig. 4A). With increasing porosity �(P(V)) increases monotoni-
ally, and differences in �(P(V)) between the packing types are
isible from ε = 0.40. The skewness of the distribution 	(P(V)) is
ittle affected by increasing porosity for the S-packings (Fig. 4B). Dif-
erentiation between R- and S-packings by 	(P(V)) starts already at
= 0.38, and 	(P(V)) for the R-packings is rather sensitive towards

ncreasing porosity. The strongest effect on the statistical parame-
ers �(P(V)) and 	(P(V)) in Fig. 4 comes from the principal difference
etween R- and S-packings, i.e., the random or ordered initial dis-
ribution of particle centers. Variation of the rate constant in the
acking protocols (i.e., varying the distance over which particle
enters can move away from their initial positions) affects the
tatistical parameters moderately and in the expected direction.
ig. 4 augments the qualitative picture of Fig. 2 by a thorough
tatistical analysis, demonstrating that the S-packings retain rela-

ively narrow and symmetric Voronoï volume distributions even
t increasing porosity (as opposed to the R-packings), and that
he four generated packing types are indeed characterized by a
ystematic decrease of disorder in the sequence: R × 0.001 > R > S >
× 2.
ackings (cf. Fig. 3B). (A) Standard deviation � and (B) skewness 	 as a function of
upper and lower bounds of 95% confidence intervals.

The Voronoï volume distributions in Fig. 4 describe the degree of
deviation of a given packing type from a perfectly crystalline pack-
ing. All spheres in a crystal are associated with the same Voronoï
volume, so that the Voronoï volume distribution is a delta function.
For the studied random bulk packings the Voronoï volume distri-
butions become wider and more asymmetric as we move from the
RCP (ε = 0.366) to the RLP limit (ε = 0.46). Their standard deviation
and skewness can then be used to express and quantify the het-
erogeneity of a packing (Fig. 4), analogous to the familiar analysis
of separation efficiency from the width and skewness of peaks in a
chromatogram.

For completeness we mention that Aste and Di Matteo [73]
deduced by statistical mechanics that the Voronoï volume distribu-
tions for monodisperse random sphere packings follow a so-called
two-parameter ‘k-Gamma’ function, in which k, the shape parame-
ter of the curve, depends sensitively on the packing microstructure.
Furthermore, we also conducted a Delaunay tessellation [21,64] of
the generated packings, but found a stronger correlation between
dispersion and disorder with the statistical moments of the Voronoï
volume distributions.

Our findings (Fig. 4) agree with those of closely related inves-
tigations [66,70,73], where the dilution of particle packings was
always accompanied by broadening and increasing asymmetry of
the Voronoï volume distributions. Packings at the RCP limit show
merely statistical variations in standard deviation and skewness
of their Voronoi volume distributions (Figs. 3 and 4), because the
constraints of the RCP limit on the placement of particles allow
for so little variation in packing microstructure that the different
protocols used in this study will nonetheless yield very similar
packings [8,11,20–22]. At the other extreme of stable packings,
the RLP limit, the spheres experience more freedom of placement
and differences between the packing types are clearly reflected in
their Voronoï volume distributions. This behavior can be visual-
ized with a formal analogy between the statistical mechanics of
granular jammed matter and classical statistical mechanics: the
microcanonical ensemble, defined by all microstates with fixed
energy, is replaced by the ensemble of all jammed microstates with
fixed volume [7]. Within this notion, the RCP limit of spheres can
be interpreted as the ground state of the ensemble of jammed mat-
ter for a given friction (see, e.g., the volume landscape of jammed
matter, Fig. 2 in [11]).

4.2. Transient and asymptotic dispersion
We simulated eddy dispersion in the generated packings to
correlate the quantified microstructural disorder with the trans-
port properties most relevant to chromatography. The longitudinal
dispersion coefficient DL usually discussed in the engineering liter-
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ture [76] is related to chromatographic plate height H by [77]

L = uavH

2
= �Dmh

2
, (4)

here h = H/dp denotes reduced plate height and � is the reduced
elocity introduced earlier. The flow pattern of a fluid depends
ritically on the morphology of the pore space available for
he flow, so that the inherent structural heterogeneities of the
acked beds investigated in this work determine time and length
cales that characterize velocity fluctuations in the mobile phase
33,42,77–82].

By applying the random–walk relationship to a model of eddy
ispersion incorporating the coupling between transverse diffu-
ion and spatial velocity fluctuations, Giddings [77] developed a
late height equation by analogy to parallel conductors. The com-
rehensive equation for h = f(�) is

= b

�
+

4∑
i=1

2
i

1 + (2
i/ωi) �−1
+ c�. (5)

The first term on the right-hand side of Eq. (5), b/�, accounts
or the effect of longitudinal molecular diffusion in the packed
ed driven by the concentration gradient along the zone profile
82]. The second term in Eq. (5) describes eddy dispersion as the
um of four contributions used to model the erratic mass transfer
y flow and diffusion in the interparticle pore space of a packing
n different length scales (transchannel, short-range interchannel,
ong-range interchannel, and transcolumn), where 
i and ωi are
niversal structural parameters characteristic of each contribution,
nd the ratio �1/2 = 2
i/ωi is a reduced transition velocity for each
ype of velocity disparity. It is the velocity at which the correspond-
ng plate height term reaches half of its limiting value and thereafter
egins to flatten noticeably [83]. The last term in Eq. (5), c�, accounts
or the mass transfer kinetics from the bulk solution into and across
he particles [84].

To our knowledge the challenge of resolving systematically,
ither by experiment or simulation, the different structural param-
ters characteristic of each contribution to the eddy dispersion term
f the comprehensive Giddings equation (Eq. (5)) has never been
ndertaken. Past investigations in this direction [33,85–87] are all

n favor of Giddings’ coupling theory of eddy dispersion, but the
nalysis remained limited to the “simple” Giddings equation, i.e.,
q. (5) with i = 1.

Recent progress in our understanding of the time and length
cales as well as the magnitude of individual contributions to eddy
ispersion in chromatographic beds stems from a high-resolution
umerical analysis of flow and mass transport in computer-
enerated bulk packings of spherical particles and complementary
onfined cylindrical packings with a cylinder-to-particle diameter
atio of 20 [42]. The transient behavior of longitudinal and trans-
erse dispersion was analyzed and correlated with the spatial scales
f heterogeneity in the bulk and confined packings. It was found
hat the total effect of eddy dispersion on the plate height curves
an be approximated in the practical range of chromatographic
perational velocities by a composite expression in which only the
hort-range interchannel contribution retains its coupling char-
cteristics, whereas transchannel and transcolumn contributions
ppear as simple velocity-proportional terms.

In the previous [42] as well as in the present work, the choice
f packing protocols, porosities, and operating conditions in our
umerical analysis approach facilitates the focus on eddy disper-

ion and its precise dependence on the morphology of the packed
eds. The selection of perfectly monosized, spherical particles
llows the strict operation with reduced parameters (h = H/dp and
= uavdp/Dm) without influence from the particle size distribution
nd particle shape. The use of nonporous support particles and inert
. A 1217 (2010) 4713–4722

conditions (unretained tracer particles) eliminates mass transfer
resistance contributions (c = 0 in Eq. (5)) [86,87]. Although it has
sometimes been claimed that even with solid particles and unre-
tained tracers a remaining c-term in Eq. (5) is needed to account for
pore-scale Taylor dispersion, we like to emphasize that this contri-
bution is already contained in the eddy dispersion term of Eq. (5)
as the transchannel contribution. In deriving Eq. (5) under most
general conditions, Giddings has pooled all mass transfer resis-
tances in the mobile phase (as distinguished from diffusion and
adsorption/desorption in the stationary phase) into the coupling
expression of Eq. (5) (cf. derivation of Eq. (2.11–1) on p. 62 in [77]
and the transition to Eq. (2.11–2)).

For the packings and conditions considered in our analysis, the
coefficient accounting for the contribution of longitudinal diffu-
sion to the reduced plate height in Eq. (5) is b = 2	 , where 	 is the
obstruction factor often used in chromatography [77,88]. It is the
inverse of the tortuosity factor (�) of the interconnected pore space
usually used in the engineering literature [76] and is defined as

	 = lim
t→∞

D(t)
Dm

= 1
�

= Deff

Dm
, (6)

where Deff is the effective diffusion coefficient in the sphere pack-
ing, i.e., its asymptotic value observed in the long-time limit for
� = 0.

The packed beds in this work mimic infinitely wide, unconfined
random sphere packings, suitable for the study of eddy dispersion
as related to bulk microstructural properties without the complex
influence of wall effects [31,34,37–39,42,89–91]. To quantify the
time and length scales behind the velocity heterogeneities from
different packing microstructures, we analyze the development
of longitudinal dispersion coefficients DL(t). Monitoring the tran-
sient behavior of the dispersion process towards asymptotic values
allows to distinguish between individual contributions to eddy dis-
persion, especially with regard to the upper limit of the involved
time and length scales. This helps to condense, where physically
meaningful, the number of scales of velocity disparity in a packing
proposed by Giddings [77]. In the investigated bulk packings, we
expect only the transchannel and a short-range interchannel effect
to contribute to eddy dispersion.

Fig. 5A shows the development of normalized longitudinal
dispersion coefficients DL(t)/Dm at � = 50 for the R × 0.001 pack-
ings at three porosities (ε = 0.366, 0.42, and 0.46). Elapsed time
here has been normalized through the transverse dispersive time
�D = 2DTt/dp

2. The dispersive time unit 2DT/dp
2 corresponds to the

time span after which tracer particles are dispersed laterally by one
sphere diameter. The use of the transverse dispersive time scale is
important here, because neither pure diffusion nor pure convection
determines the lateral equilibration between different velocities,
which instead would have resulted in a diffusive (�D = 2Dmt/dp

2)
or a convective (�C = uavt/dp) time scale. The use of DT(�) in the
dimensionless dispersive time scale �D (Fig. 5A) reflects the actual
combination of flow and diffusion, which is also the essence of
Giddings’ coupling theory [77].

All generated packings, irrespective of their packing proto-
col, demonstrate asymptotic dispersion for �D < 2 throughout the
whole porosity range (ε = 0.366–0.46), as shown exemplarily for the
R × 0.001 packings in Fig. 5A. However, as the porosity decreases
from ε = 0.46 to ε = 0.366, the transient dispersion domain shrinks,
i.e., asymptotic dispersion is reached faster (cf. Fig. 5A). This is
readily explained by our previous analysis (Fig. 4) to originate
from the accompanying decrease of local disorder in the packing

microstructures. The time scale of �D = 2DTt/dp

2 ≈ 2 translates to
a characteristic average transverse dispersion length in the bulk
packings 〈T〉 of

〈T〉 =
√

2DT(�)t ≈
√

2dp. (7)
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ig. 5. (A) Time evolution of normalized longitudinal dispersion coefficients DL(t)/D
ormalized asymptotic dispersion coefficients DL/Dm at � = 50 for all generated pac
ounds of 95% confidence intervals.

Thus, dispersion in the bulk packings is asymptotic after a dis-
ance of about 1.4dp (or less, depending on the packing protocol
nd porosity) has been sampled laterally by the tracer particles.

The analysis of longitudinal dispersion confirms our surmise
hat a short-range disorder is responsible for the upper limit in
he time and length scales of eddy dispersion in the bulk packings.

hereas transchannel equilibration (length scale � dp) is required
n any packed bed, ordered or random, the short-range heterogene-
ty observed here is associated with the disorder in a random sphere
acking as compared with a crystalline packing. Our characteriza-
ion of a short-scale heterogeneity on the order of 1–1.5dp (Fig. 5A,
q. (7)) compares favorably with the distance of ∼1.25dp required
or exchanging molecules between the involved velocity extremes
stimated by Giddings (p. 45 in [77]).

Fig. 5B contains the asymptotic longitudinal dispersion coeffi-
ients (DL/Dm) for all generated packings at � = 50. The data are
mmediately reminiscent of those in Fig. 4, i.e., the dispersion coef-
cients and (particularly) the standard deviations of the Voronoï
olume distributions (Fig. 4A) show highly similar dependencies
n packing protocol and porosity. From this we conclude that the
idth of the Voronoï volume distribution of a packing is a sensitive
easure for its disorder that closely correlates with the dispersion

n the packing.
To summarize, our analysis of transient dispersion in the bulk

phere packings reveals a short-range interchannel contribution
n the single-particle scale (1–1.5dp) in addition to the transchan-
el contribution, which naturally exists in any packed bed on the
cale of an individual channel between the particles (�dp). Thus, all
ackings investigated in this work can be characterized as relatively
omogeneous, even though they were generated to reflect individ-
al local disorder (Figs. 2-4). Structural and flow heterogeneities
eyond the documented short-scale (cf. Fig. 5A, Eq. (7)) cannot be
esolved.

This knowledge is extremely helpful in analyzing the depen-
ence of reduced plate heights on the reduced velocity, h = f(�),
y the comprehensive Giddings equation (Eq. (5)), as it allows to
educe the number of eddy dispersion contributions to the tran-
channel and the short-range interchannel effect (Eq. (5) with i = 2).
hus, we use the following form of Eq. (5) to fit the dependence of
educed plate heights (calculated from the asymptotic values of
L/Dm – see Fig. 5A – via Eq. (4)) on the reduced velocity for the
enerated bulk packings (cf. Eq. (2.11–6) on p. 63 in [77])
= 2	

�
+ 2
1

1 + (2
1/ω1)�−1︸ ︷︷ ︸
transchannel

+ 2
2

1 + (2
2/ω2)�−1︸ ︷︷ ︸
short-range interchannel

, (8)
= uavdp/Dm = 50 for R × 0.001 packings at porosities of ε = 0.366, 0.42, and 0.46. (B)
as a function of packing protocol and porosity. Error bars indicate upper and lower

where indices 1 and 2 refer to the transchannel and the short-
range interchannel contribution to eddy dispersion, respectively.
As explained above, the use of nonporous support particles and
unretained tracer particles gives c = 0 in Eq. (5).

The h–� curves for the four different types of bulk packings are
presented in Fig. 6. Each curve contains 29 values for h over the
range of 0.5 ≤ � ≤ 750, with each h value representing the aver-
age from 10 individual packings of a given type and porosity. For
packings at the limiting porosities (ε = 0.366 and ε = 0.46) the best
fits of the h–� data to the condensed Giddings equation for bulk
packings (Eq. (8)) are also shown. Eq. (8) fits excellently the simu-
lated plate height data over the whole range of reduced velocities
(R2 > 0.999). The shift of the plate height curves as the porosity
increases from ε = 0.366 to ε = 0.46 reveals the degree to which
the porosity increases the disorder and therefore the dispersion
in a particular packing type. The plate height curves for the most
ordered packing type, the S × 2 packings, are hardly affected by a
porosity increase, whereas those for the least ordered packing type,
the R × 0.001 packings, span a relatively large range. For example,
the curve minimum for the R × 0.001 packings shifts from the uni-
versal (to all packing types) minimum at the RCP limit at hmin = 0.5
and �min = 10 to hmin = 1 and �min = 5 at the RLP limit. The disparate
sensitivities of the various packing types towards increased poros-
ity underline the importance of the packing method for dispersion
in (and ultimately the separation efficiency of) a packed bed.

The parameters for the transchannel (
1, ω1) and the short-
range interchannel contribution (
2, ω2) obtained from the fitting
of the comprehensive dataset of Fig. 6 are summarized in Fig. 7.
Values for the obstruction factor 	 = Deff/Dm (Eq. (6)) were obtained
independently by monitoring the long-time (tortuosity) limit of the
diffusion coefficient Deff in the generated bulk packings, analogous
to DL(t)/Dm in Fig. 5A, but for � = 0. In this way, the contribution
of longitudinal diffusion to the dispersion (first term on the right-
hand side of Eq. (8)) can be determined separately and with high
precision [42]. The values of 	 range from ∼0.65 (for all pack-
ings at the RCP limit) to ∼0.71 (for the S × 2 packings at the RLP
limit). The received 	 value for each packing was then fixed dur-
ing fitting of the h–� data in Fig. 6 to Eq. (8). The values of Fig. 7
should now be compared with the estimates of Giddings [77], who
did not include their dependence on packing method or porosity,
but was certainly well aware at his time that both factors influ-
ence the final packing microstructure. Giddings estimated values

of 
1 ∼ 0.5, ω1 ∼ 0.01, 
2 ∼ 0.5, and ω2 ∼ 0.5 [77]. We recognize that
our values in Fig. 7 genuinely reflect his estimates made more
than forty years ago. Concerning the remaining differences in the
“universal” structural parameters (
i and ωi) it should be noted
that the exact geometrical and topological differences between the



4720 S. Khirevich et al. / J. Chromatogr. A 1217 (2010) 4713–4722

F uavdp/
b gener

p
(
a
q

F
p

ig. 6. Dependence of the reduced plate height h = H/dp on the reduced velocity � =
ulk packings (R × 0.001, R, S, S × 2). Each value of h represents the average from 10
acked beds analyzed by Giddings and those studied in this work
and particularly those encountered in chromatographic practice)
re hardly known with sufficient accuracy to allow for meaningful
uantitative distinctions. But exactly this missing link is provided

ig. 7. Dependence of the parameters for the transchannel contribution (
1 and ω1; left co
acking protocol and porosity. Values were obtained from the best fits of the comprehen
Dm (0.5 ≤ � ≤ 750) and the porosity (0.366 ≤ ε ≤ 0.46) for the four different types of
ated packings. Solid lines are the best fits of the data at ε = 0.366 and 0.46 to Eq. (8).
in the current work by the complementary statistical analysis of
the packed beds (Figs. 3 and 4), which quantifies their disorder.

Comparison of Fig. 7 with Fig. 4 now rounds off our
structure–transport analysis from packing generation via statistical

lumn) and the short-range interchannel contribution (
2 and ω2; right column) on
sive dataset of Fig. 6 to the condensed Giddings equation for bulk packings, Eq. (8).
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echanics to hydrodynamics and chromatography. We particu-
arly note the strong correlation between the dependencies on
eneration protocol and porosity of the short-range interchannel
ffect (
2, ω2) in Fig. 7 and both the standard deviation (�) and
kewness (	) of the Voronoï volume distributions reported in Fig. 4.
hus, both statistical measures of the Voronoï volume distributions
�, 	) are excellent, quantitative descriptors of the short-range
isorder in the generated packings. This confirms that the devi-
tion of the Voronoï volume distributions in Fig. 3 from the delta
unction characterizing a crystalline packing describes the origin of
hort-range disorder, and the statistical measures in Fig. 4 therefore
epresent particle packings with an individual, local randomness in
heir microstructure.

In addition to the strong correlation between our statistical mea-
ures (Fig. 4) and the parameters 
2 and ω2 characterizing the
hort-range interchannel effect (right column in Fig. 7), we also note
weaker correlation of the statistical measures with the parameter
1 for the transchannel effect in Fig. 7. This is expected, because the
alue of ω1 depends on the lateral dimensions of the interparticle
ores in a packed bed (pp. 43–44 in [77]), thus, also on the porosity
nd individual generation of a packing. Further, we observe little
r no correlation between the statistical measures in Fig. 4 and the
arameter 
1 for the transchannel effect (Fig. 7). The values of 
1
catter around ∼0.48 (close to Giddings’ value of 0.5 [77]). In this
espect, the velocity inequality between the center and the wall
egions of a pore may be envisioned as lasting along the length of a
ingle particle, after which the flow will split up into several subse-
uent pores (pp. 49–50 in [77]). Therefore, the value of 
1 is little or
ot affected by the local disorder encountered in this work. To sum-
arize, the analysis of short-range disorder based on the Voronoï

olume distributions (Fig. 4) shows the expected strong correlation
ith the short-range interchannel contribution to eddy dispersion

n Eq. (8), whereas the transchannel contribution is relatively little
ffected.

Finally, by examining the above-determined structural param-
ters (
i, ωi) we identify the short-range interchannel effect as
eing responsible for a convex upward bending of the eddy dis-
ersion curve at low velocities. The transchannel effect causes the
ddy dispersion curve (and overall plate height data) to taper off at
igh velocities. This is easily understood by calculating the transi-
ion velocities �1/2 = 2
i/ωi for each contribution to eddy dispersion
t which the plate height term reaches half of its limiting value
nd thereafter begins to flatten noticeably [83]. Where �1/2 is large
∼200 for the transchannel effect) the contribution to the reduced
late height continues to increase with velocity over a significant
ange of the plots in Fig. 6, the same as for an ordinary kinet-
cs or mass transfer velocity-proportional term, whereas the plate
eight contribution of the short-range interchannel effect (�1/2 ∼ 3)
eaches its plateau at relatively low velocities.

The high transition velocities of the transchannel contribution
ndicate that in a practical range of chromatographic operation, i.e.,
t reduced velocities of about 5 ≤ � ≤ 20, this effect reduces to a sim-
le mass transfer velocity-proportional term, i.e., for (2
i/ωi) � �,
he transchannel contribution can be expressed by ω1�. Only the
hort-range interchannel contribution retains its coupling charac-
eristics. The total effect of the component plate height curves to
ddy dispersion can then be written in the form

eddy = ω1� + 2
2

1 + (2
2/ω2)�−1
. (9)

This result agrees very well with the scale analysis for bulk pack-

ngs in our previous work [42]. The relatively low impact of coupling
etween diffusive and flow mechanisms of eddy dispersion in this

imited range of velocities (5 ≤ � ≤ 20) also explains why the van
eemter equation [92] remains an accurate description of plate
eight data in that case, particularly with porous particles, when

[
[
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the mass transfer terms associated with the stationary phase are
added [85,93].

5. Conclusions

Statistical analysis of packed beds by the standard deviation
and skewness of the Voronoï volume distributions (Figs. 3B and
4) provides quantitative scalar measures for local disorder in pack-
ing microstructure that correlate strongly with the resulting eddy
dispersion (Figs. 5B and 6). Therefore, the presented approach
defines a straight route to quantitative structure–transport rela-
tionships, replacing popularized views based on heuristics [94].
Transport phenomena relevant to chromatography can be ana-
lyzed in detail by direct numerical simulations (realized on an
efficient high-performance computing platform) and correlated,
e.g., with the generalized Giddings equation (Figs. 6 and 7). Com-
plementary analysis of the transient dispersion domain allows to
identify the spatial scales of disorder in the packings, which helps
to condense the number of scales of velocity disparity in a pack-
ing proposed by Giddings [77]. In the investigated bulk packings,
we identified only the transchannel and a short-range interchan-
nel effect to contribute to eddy dispersion (Fig. 5A). This result is
in excellent agreement with our statistical analysis based on the
Voronoï volume distributions, which revealed a packing porosity
and protocol-dependent short-range disorder, in a strong cor-
relation with the short-range interchannel contribution to eddy
dispersion (Figs. 4 and 7).

Future refinements in packing generation will focus on the
physicochemical properties of the particles like surface rough-
ness and chemical modification, as well as on nonuniform particle
shape and size distributions. In experimental packings these effects
are inherently included. The microstructure of experimental pack-
ings (e.g., in a chromatographic column) – though not as easily
accessible (and at high precision) as those of simulated packings
– may be analyzed by suitable techniques such as nuclear mag-
netic resonance imaging and confocal laser scanning microscopy.
Comparison of experimental and simulated microstructures will
help to differentiate systematically between packing algorithms
and protocols used in simulations and experimental studies. This
could also provide a new approach to column packing and consoli-
dation, which traditionally are largely treated phenomenologically
and considered an art rather than a science.
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